SOIL 4213 Precision Agriculture

Contact Info

D. Brian Arnall
Precision Nutrient Management
Oklahoma State University
373 Ag Hall
Stillwater OK, 74078
Office:  405.744.1722

E-mail: b.arnall@okstate.edu


field.jpg

 

SOIL 4213 Precision Agriculture

Soil 4213 Precision Agriculture

 
Grid Soil Sampling with a Tablet
  
 
From Wikipedia, the free encyclopedia
 
Precision farming (PA) or satellite farming or site specific crop management (SSCM) is a farming management concept based on observing, measuring and responding to inter and intra-field variability in crops. Crop variability typically has both a spatial and temporal component which makes statistical/computational treatments quite involved. The holy grail of precision agriculture research will be the ability to define a Decision Support System (DSS) for whole farm management with the goal of optimizing returns on inputs while preserving resources. The reality today is that seemingly simple concepts such the ability to define management zones, areas where different management practices will apply, for a single crop type on a single field over time are difficult to define (see, for example, McBratney et al. (2005),[2] and Whelan et al. (2003)[3]). Whelan and McBratney (2003) articulate a number of approaches that are currently being used to define management zones (mostly by the research community), these include hand drawn polygons on yield maps, supervised and unsupervised classification procedures on satellite or aerial imager, identification of yield stability patterns across seasons, etc. Among these many approaches is a phytogeomorphological approach which ties multi-year crop growth stability/characteristics to topological terrain attributes.[4][5] The interest in the phytogeomorphological approach stems from the fact that the geomorphology component typically dictates the hydrology of the farm field. Multi-year datasets are now becoming available that show this stability and these effects (Kaspar et al., (2003)), however, there is a lot of work remaining to create an actual DSS system that could universally help farmers.

It can be said that the practice of precision agriculture was enabled by the advent of GPS and GNSS. The farmer's and/or researcher's ability to locate their precise position in a field allows for the creation of maps of the spatial variability of as many variables as can be measured (e.g. crop yield, terrain features/topography, organic matter content, moisture levels, nitrogen levels, pH, EC, Mg, K, etc.). Further, these maps can be interpolated onto a common grid for comparison (see Whelan et al. (2003) and the reference to the VESPER kriging system). Spatial and temporal variability of crop variables are at the heart of PA, while the spatial and temporal behaviours of that variability are key to defining amendment strategies, or 'recipe maps'. Recipe maps would be the output of any generalized decision support system that could be defined for farm use. Precision agriculture has also been enabled by technologies like crop yield monitors mounted on GPS equipped combines, the development of variable rate technology (VRT) like seeders, sprayers, etc., the development of an array of real-time vehicle mountable sensors that measure everything from chlorophyll levels to plant water status, multi- and hyper-spectral aerial and satellite imagery, from which products like NDVI maps can be made, although the costs of these are high, information technology, and geospatial tools.

 

 

Document Actions

Oklahoma State University  Stillwater, OK 74078 | 405.744.5000